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The exact Riemann problem solutions of the usual equations of ideal magnetohy-
drodynamics (MHD) can have negative pressures, if the initial data has∇ ·B 6= 0. This
creates a problem for numerical solving because in a first-order finite-volume con-
servative Godunov-type method one cannot avoid jumps in the normal magnetic field
component even if the magnetic field was divergenceless in the three-dimensional
sense. We show that by allowing magnetic monopoles in MHD equations and properly
taking into account the magnetostatic contribution to the Lorentz force, an additional
source term appears in Faraday’s law only. Using the Harten–Lax–vanLeer (HLL)
Riemann solver and discretizing the source term in a specific manner, we obtain
a method which is positive and conservative. We show positivity by extensive nu-
merical experimentation. This MHD-HLL method is positive and conservative but
rather diffusive; thus we show how to hybridize this method with the Roe method
to obtain a much higher accuracy while still retaining positivity. The result is a fully
robust positive conservative scheme for ideal MHD, whose accuracy and efficiency
properties are similar to the first order Roe method and which keeps∇ ·B small
in the same sense as Powell’s method. As a special case, a method with similar
characteristics for accuracy and robustness is obtained for the Euler equations as
well. c© 2000 Academic Press

1. INTRODUCTION

The equations of ideal magnetohydrodynamics (MHD) are widely used in many large-
scale plasma physical simulations, and their importance is growing as high performance
computing is becoming a “desktop” tool. As an example, there are plans to start using a
three-dimensional MHD-based magnetosphere-ionosphere coupling simulation for opera-
tive space weather forecasting purposes. For such applications especially, the robustness of
the code is very important since the program is expected at least to converge for any solar
wind input, if not necessarily to produce a correct forecast in every situation.
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An optimal scheme for the MHD equations would have the following four properties:

• Exact conservation of mass, momentum, and energy.
• Preservation of∇ · B = 0 as accurately as possible.
• Positivity (pressure and density remain positive under all circumstances).
• As small numerical dissipation as possible.

Any finite-volume method (FVM) which is based on computing the fluxes at cell in-
terfaces is conservative so the first property is not difficult to satisfy [11]. The∇ ·B≈ 0
requirement is more difficult, but if a scheme does not preserve∇ ·B= 0 within roundoff
error, it might preserve it within truncation error [15, 16], which is usually enough. In other
cases one has to periodically remove the divergence by a subtraction of the curl-free part,
which is sometimes called a projective method or elliptic cleaning [12, 19–21]. Finding
a provably positive scheme which is at the same time conservative is, on the other hand,
still an unsolved problem in MHD, although certain kinetic solvers [2] may actually have
these properties, but they are much more diffusive than Roe-type methods (low-diffusion
kinetic-type solvers have been developed for Euler equations [13], but are not known in
MHD). Lacking such a scheme, one has had to fight the positivity problem by adding explicit
diffusion, fiddling with the initial and boundary conditions or grid refinement, modifying
the wavespeeds, or by trying to fix negative pressures once they arise by adding energy
locally. The list of tricks is long and not exhaustive. These usually help in individual cases,
but none of these cures the problem for once and for all. The last point, accuracy, is easi-
est to achieve with Roe-type methods, which are based on some local linearization of the
Riemann problem [11]. It is well known that Roe-type methods are not positive, which means
that no linearization is able to produce a positive solution for all Riemann problems [4].

Our practical experience with magnetospheric MHD simulations [8–10] has shown that
the positivity problem is worse and occurs more often than what one could assume after
reading the literature, and that problems arise more often when one moves towards more
realistic models with real solar wind input, automatically adaptive spatial and temporal
grids, and realistic ionospheric models. According to our experience, the most workable
solution to cure negative pressures after they arise is simply to cancel the cell update step if
its pressure would become negative. This method is sometimes able to fix negative pressures
in a stable manner, although it is of course unphysical and breaks the conservation laws.

The connection between the pressureP, the total energy densityU , the mass densityρ,
the momentum fluxp= ρv, and magnetic fieldB is

P = (γ − 1)

(
U − p2

2ρ
− B2

2µ0

)
. (1)

If a scheme is positive and conserves at least the total energy exactly, it is numerically
stable in the sense that all energy components (thermal, kinetic, and magnetic) remain
bounded, if the flow through the boundaries is well behaved. The total energy

∫
dVU re-

mains bounded because of energy conservation. The kinetic and magnetic energy densities,
and thus all components of the velocity and magnetic field, are also bounded becauseP> 0.
Thus, a positive conservative scheme is fully robust and thus highly desirable.

By looking at (1) it is clear why it is not easy to develop conservative methods which
are also positive. The pressure (thermal energy) is computed by subtracting the kinetic and
magnetic energies from the total energy. Especially in a low-beta plasma (β = 2µ0P/B2),
the total energy consists almost totally of magnetic energy, and thus subtracting the two is
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prone to all kinds of numerical errors which can easily turnP negative. The quantitiesU , ρ,
p, andB on the right-hand side of (1) are themselves computed from their own conservation
laws, which are seemingly unrelated to Eq. (1). Thus it is not cleara priori that conservative
methods which are positive under all circumstances exist at all.

One can ease the positivity problems in a low-beta plasma somewhat if the strong magnetic
field is a potential field. Then one can separate the background magnetic field analytically
[20, 21]. We use this method in our global MHD simulation [8–10], but for simplicity we
drop these considerations from this paper.

If one drops the conservation requirement and uses the primitive variable formulation or
the semi-conservative formulation [17] where the pressure is one of the dynamical variables,
it is easier to develop positive methods. However, when doing so one loses exact conservation
which causes other shortcomings, such as possibly erroneous shock speeds [11].

It is intriguing that the Harten–Lax–vanLeer (HLL) scheme [3, 4, 6] is a positive scheme
for any conservative hyperbolic system, whose exact Riemann problem solutions are positive
for positive left and right states. In addition to the Euler equations, a planar Lagrangian MHD
Riemann problem without a jump in the normal magnetic field has been shown to be well
posed [14]. The solution of a well-posed Riemann problem has non-negative pressure and
density (zero pressure and density can occur, but this is usually not an issue for numerics).
Thus the HLL method is conservative and positive for Euler equations, as was asserted by
Einfeldtet al. [4].

A straightforward application of the HLL scheme to the seven-wave MHD equations
reveals that the HLL middle state, which is an average of the exact Riemann problem
solution, can become non-positive if there is a jump of the normal component of the magnetic
field across the cell interface. This implies that even the exact solutions to MHD Riemann
problems sometimes fail to be positive, if there is a jump in the cell interface normal
component of the magnetic fieldBx, i.e., a nonzero∇ ·B, in the initial data. If there is no
jump in Bx, the HLL method for MHD seems to be positive if the bounds to the wavespeeds
are large enough (we have found no counterexamples). This also follows from the well-
posedness of MHD mentioned above.

In a two- or three-dimensional first-order Cartesian FVM which is based on solving
one-dimensional Riemann problems, we cannot avoid jumps inBx at cell interfaces even if
∇ ·B= 0 is valid in a multidimensional sense. Thus, to find a positive conservative scheme
for MHD we seem to have two possible routes. The first route is to abandon the first-
order FVM, which is based on piecewise constant states, and go to higher order methods.
Higher order representations of the magnetic field can be made divergence-free, as can
a surface-averaged representation. The second route is to modify the MHD equations so
that they give positive solutions even when∇ ·B 6= 0. In this paper we pursue the second
route.

The structure of the paper is as follows. After reviewing the HLL method, we find a
modified MHD system which allows∇ ·B 6= 0. We then apply the HLL method to this
modified MHD system and show its positivity by numerical experiments. After having
found this positive and conservative method, we show that to increase its accuracy, it can be
hybridized by any other method of computing the interface fluxes while retaining positivity.
As an example we hybridize it with Roe’s method. The resulting method is identical with
Roe’s method whenever Roe’s method is in no danger of violating positivity, but reverts to
HLL in the remaining cases. This method, therefore, has the well-known accuracy properties
of Roe’s method, but has cured its positivity problem.
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2. THE HLL METHOD

The HLL scheme without a source term has been given elsewhere [3, 4]. We present the
derivation here, also including a source term.

Consider a one-dimensional hyperbolic system [11]

∂u

∂t
= −∂ f

∂x
+ s, (2)

whereu= u(x, t) is the solution vector,f = f (u) is the flux vector, ands= s(x, t) is the
source term. The initial condition is of the Riemann problem type,

u(x, 0) =
{

uL , x < 0
uR, x > 0.

(3)

Let bL and bR be the minimum and maximum wavespeed, respectively, so thatu(x, t)=
uL for x< bLt andu(x, t)= uR for x> bRt . Let τ be the timestep andL = (bR− bL)τ the
length of the interval on whichu(x, τ ) can differ fromuL anduR. We first assume that
bL ≤ 0 andbR≥ 0 and return to the other cases below. We denote the spatial average over
intervalL by ū(t),

ū(t) ≡ 1

L

bRτ∫
bLτ

dxu(x, t). (4)

Integrating (2) from 0 toτ and taking the spatial average overL yields

ū(τ )− ū(0) = − τ
L
( fR− fL)+

τ∫
0

dts̄(t), (5)

where fR= f (uR) and fL = f (uL).
The spatial average at the initial momentū(0) is easy to compute by using (3) and the

assumptionsbL ≤ 0, bR≥ 0, and we obtain

ū(0) = bRuR− bLuL

bR− bL
. (6)

Thus we can writēu(τ )= um+1um, where

um = bRuR− bLuL − ( fR− fL)

bR− bL
(7)

and

1um =
τ∫

0

dts̄(t). (8)

The stateū(τ ) is the average of the exact solution of the Riemann problem. If the set
of physical states of the hyperbolic system (states with positive density and pressure) is
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convex, any average of physical states is a physical state [4]. Both Euler and MHD equa-
tions are convex in this sense. Convexity means that ifu1 andu2 are physical states, then
u= (1− λ)u1+ λu2 is also, for 0≤ λ≤ 1. To show the convexity of MHD, we can write
the density and pressure of the average stateu as

ρ = (1− λ)ρ1+ λρ2
(9)

P = (1− λ)P1+ λP2+ (γ − 1)λ(1− λ)
[

1

2

ρ1ρ2

ρ
(1v)2+ (1B)2

2µ0

]
from which it is easily seen thatρ >0 and P> 0 if ρ1> 0, ρ2> 0, P1> 0, P2> 0 and
0≤ λ≤ 1. Here,1v and1B are the jumps between statesu1 andu2 in the velocity and
magnetic field.

For convex hyperbolic systems we get the important results that if the exact solution of any
Riemann problem is physical, then the HLL middle stateū(τ ) is also physical. Likewise, if
the HLL middle statēu(τ ) turns out to be nonphysical, we can infer that the exact Riemann
problem solution must also be nonphysical, or else the bounds of the wavespeedsbL and
bR have been underestimated.

Next we need the expression for the HLL interface fluxFHLL [4]. The flux FHLL does not
depend on1um but only onum, uL , anduR. One way of computingFHLL is to consider the
cell L which resides left of the interface. SinceFHLL cannot depend on the data on cells
which are left from cellL, we can assume that these have the same state as cellL, i.e., that
there is no jump on the left-hand interface of cellL. Because the numerical flux function
FHLL must equal the analytic fluxf (u) if there is no jump [11], the flux entering cellL
from the left must be equal tofL . After timeτ , the solution in cellL is equal touL on the
left side of the cell and toum on the right side of the cell. The length of the interval where
the solution isum is−bLτ . Thus we can write for the cell average after timeτ

ūL(τ ) = (1xL + bLτ)uL − bLτum

1xL
= uL − τ

1xL
(FHLL − fL) (10)

from which we obtain

FHLL = fL + bL(um − uL). (11)

Considering the right-hand cellR in a similar way we obtain an alternative expression for
FHLL ,

FHLL = fR+ bR(um − uR). (12)

The equivalence of Eqs. (11) and (12) can be shown easily by using (7). By substitutingum

from (7) we can also write

FHLL = bLbR(uR− uL)+ bR fL − bL fR

bR− bL
. (13)

The above formulas for the HLL flux hold forbL ≤ 0≤ bR. If bL ≤ bR< 0, we have
simply FHLL = fR. Likewise, if 0< bL ≤ bR we haveFHLL = fL .
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The contribution of the source term1um to cellsL andR must be computed by taking
into account how far the waves which are limited bybLτ andbRτ have propagated within
each cell. On cellL the averagēuL(τ ) must therefore be incremented by1ūL(τ ),

1ūL(τ ) = 1xmL

1xL
1um, (14)

where1xmL= (min(0, bR)− min(0, bL))τ . On cellR the corresponding modification is

1ūR(τ ) = 1xm R

1xR
1um, (15)

where1xm R= (max(0, bR)− max(0, bL))τ . These formulas are valid for the casesbL > 0
andbR< 0 also. For each cell, one has to use both Eqs. (14) and (15).

3. MAGNETIC MONOPOLES IN MHD

Magnetic monopoles were introduced in MHD in the pioneering work of Powell [15, 16].
Similar equations had appeared already much earlier, but in a different context [5]. Powell’s
interest was not so much in deriving a positive method but rather to keep∇ ·B small without
using elliptic cleaning. He reports that his equations keep∇ ·B≈ 0 within truncation error
and no elliptic cleaning is necessary [16].

Here we shall consider magnetic monopoles in MHD by going back to fundamentals first.
A proper generalization of Maxwell’s equations when magnetic monopoles are present is
given by

∇ · E = ρe/ε0

−∇ × E = jm + ∂B
∂t (16)

∇ · B = ρm

∇ × B = µ0je+ 1

c2

∂E
∂t
,

where the subscripterefers to electric charges and currents andm refers to magnetic charges
and currents [7]. These equations remain invariant in a global duality transform which mixes
electric and magnetic fields [7],

E→ E′ = E cosα + cB sinα
(17)

B→ B′ = −1

c
E sinα + B cosα

provided that the charges transform as

qe→ q′e = qe cosα + 1

µ0c
qm sinα

(18)

qm→ q′m = −
1

ε0c
qe sinα + qm cosα.
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The charge densitiesρe, ρm and current densitiesje, jm transform in the same way asqe,
qm. In these formulas,α is an arbitrary parameter, which does not depend on position and
time. If we require that the Lorentz force, which has the expression

F = qe(E+ v× B) (19)

for a purely electric chargeqe, is invariant under a duality transformation, we see by making
a duality transform withα = π/2 that the Lorentz force acting on a purely magnetic charge
qm is

F = 1

µ0
qm

(
B− 1

c2
v× E

)
. (20)

Thus the generalization of the Lorentz force density is

f = ρeE+ je× B+ 1

µ0
ρmB− ε0jm × E. (21)

Even without resorting to the duality invariance, it is intuitively obvious that a magnetic
field must exert a force on a magnetic charge, in a similar vein as an electric field exerts an
electrostatic force on an electric charge.

Thejm×E term is of the order(v/c)2 times smaller than the term proportional toB and
thus can be dropped in the nonrelativistic case, which the MHD equations represent anyway
(the displacement current term proportional to∂E/∂t is dropped from Ampere’s law). In
MHD, modifications arise in Faraday’s law, where the magnetic current termjm must be
added, and in the momentum equation, where the “magnetostatic” force densityρmB/µ0

appears. Thus, the MHD system in the primitive variable formulation in the presence of
magnetic monopoles is written as

∂ρ

∂t
= −∇ · (ρv)

ρ

(
∂

∂t
+ v · ∇

)
v = 1

µ0
(∇ × B)× B−∇P + 1

µ0
B∇ · B

(22)(
∂

∂t
+ v · ∇

)
(Pρ−γ ) = 0

∂B
∂t
= ∇ × (v× B)− jm.

To close the system of equations, the magnetic currentjm must be expressed in terms of
the other variables. The “minimal” choice is

jm = ρmv = (∇ · B)v, (23)

where it has been assumed that all magnetic charges move with the same velocityv as the
plasma flow and there is no difference between positive and negative magnetic charges.
We will use this expression in what follows. Since the only purpose of including magnetic
monopoles is to obtain a positive system of equations, it does not really matter what kind
of particles the magnetic charges consist of. Any physically consistent assumption will do,
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since from general physical grounds we expect that for any system of particles, including
electric and magnetic charges, the corresponding fluid equations ought to have a positive
pressure solution. For example, we could assume that the magnetic charges are bound to
ions so that there are positive ions with positive magnetic charge and positive ions with
negative magnetic charge and negatice electrons with zero magnetic charge.

Substituting Eq. (23) in the MHD equations above and writing them in conservative form
yields, after some vector algebra (remembering that∇ ·B 6= 0),

∂ρ

∂t
+∇ · p = 0

∂p
∂t
+∇ ·

[
pp
ρ
+
(

P + B2

2µ0

)
I − 1

µ0
BB
]
= 0

(24)
∂U

∂t
+∇ ·

[(
U + P + B2

2µ0

)
v− 1

µ0
(v · B)B

]
= 0

∂B
∂t
+∇ · (vB− Bv) = −v∇ · B,

whereI is the unit dyad.
Equations (24) are identical to those derived by Powell [15, 16], except that in Powell’s

version, there are additional source terms proportional to∇ ·B also in the momentum and
energy equation. The difference between our equations and Powell’s is due to the fact that
we include the “magnetostatic” force densityB∇ ·B/µ0 in the Lorentz force expression. If
one leaves out this term from the momentum equation, one obtains Powell’s version.

Our equations conserve momentum and energy, whereas in Powell’s equations, momen-
tum and energy are not conserved if∇ ·B 6= 0. We think that the presence of magnetic
monopoles should not break the conservation of total energy and momentum, because en-
ergy and momentum should be conserved in any physical system. Another way to see this is
that if the magnetostatic force is left out, there is no force at all acting on magnetic charges
and they move as “godlike” particles, which is unphysical. Thus we believe that our version
is the “correct” one, although correctness cannot be subjected to experimental testing in
this case because magnetic monopoles have not been found in nature.

In both Eqs. (24) and Powell’s, the source terms in Faraday’s law are similar. Thus we
can make the same conclusion as Powell [15, 16] did:∇ ·B is convected as a passive scalar,

∂

∂t
(∇ · B)+∇ · (v∇ · B) = 0. (25)

Since these equations conserve mass, momentum, and energy, we call them conservative.
The fact that the volume integrals ofBx, By, andBz are not conserved if∇ ·B 6= 0 is not
physically important, as was also mentioned by Linde [12].

The linearized eigenstructure of Eqs. (24) is quite similar to Powell’s equations [16].
The eigenvalues are the same, and the “divergence wave” exists. The divergence wave
eigenvectors differ; the other seven eigenvectors are the same.

4. HLL METHOD FOR MONOPOLE-MHD

We must now find a proper discretization for the source terms=−v∇ · B in Faraday’s
law. In a one-dimensional Riemann problem,∇ ·B= ∂Bx/∂x.
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The magnetic part of the HLL source term from Eq. (8) is (the other parts are zero)

1Bm ≡
τ∫

0

dts̄(t) ≈
τ∫

0

dt
1

L

bRτ∫
bLτ

dx

(
−vm

∂Bx

∂x

)

=
τ∫

0

dt
1

L

bRt∫
bL t

dx

(
−vm

∂Bx

∂x

)

= 1

bR− bL

τ∫
0

dt

τ
(−vm)1Bx

= − vm1Bx

bR− bL
. (26)

We approximatedv in the range [bLt, bRt ] by vm, wherevm is the velocity computed
from the HLL middle stateum, Eq. (7). The range ofx integration could be reduced from
[bLτ, bRτ ] to [bLt, bRt ], because∂Bx/∂x= 0 for x< bLt andx> bRt for eacht satisfying
0< t ≤ τ . We also needed to assume thatBx is continuous for 0< t ≤ τ (for t = 0, Bx is
of course discontinuous). Notice that Eq. (26) is valid regardless of howBx varies in the
interval [bLt, bRt ]. Thus,v≈ vm is theonly approximation involved in (26), and we think
that this approximation for the velocity is, in the absence of detailed knowledge of the
solution, quite reasonable.

For the HLL method to be positive, we must find expressions for the lower and upper
boundsbL andbR for the wavespeeds of the exact Riemann problem solution. We are not
aware of rigorous bounds for MHD, instead we do the following,

â2 = γ max(PL , PR)

min(ρL , ρR)

v̂2
A =

max
(
B2

L , B2
R

)
µ0 min(ρL , ρR)

(27)

v̂2
Ax =

max
(
B2

Lx, B2
Rx

)
µ0 min(ρL , ρR)

v̂2
f =

1

2

[
â2+ v̂2

A +
√(

â2− v̂2
A

)2+ 4â2
(
v̂2

A − v̂2
Ax

)]
,

after which the wavespeed bounds are computed from

bL = min(vx L, vx R)− v̂ f
(28)

bR = max(vx L, vx R)+ v̂ f .

These wavespeed bounds guarantee positivity according to our numerical verification (see
below). They probably overestimate the true wavespeeds somewhat, which may increase
the diffusion of our HLL method [4]. However, in most cases the jump between the left
and right states is not large and in these casesbL and bR approach to the limits of the
state eigenvalues, and the non-sharpness of the bounds is numerically insignificant. Below
we will show how to hybridize the method with the Roe method, which makes a modest
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increase of HLL diffusion quite tolerable because the HLL method is reverted to in only
rare cases then.

We have performed extensive numerical searches and experimentation to find counterex-
amples to the positivity of this method. No counterexamples have been found, but the method
has produced a positive solution in every numerical test that we have thus far carried out.
Among the tests we have performed are the following:

• Computingum+1um for Riemann problems with random positive left and right
states. The total number of random problems scanned in this way was over ten million.
• The test problems of Einfeldtet al. [4] were used. We also tried to increase the

magnitude of the velocity components in the shear and rarefaction wave examples and tried
the same examples with a large jump inBx.
• The magnetic shock tube problem of Brio and Wu [1] was solved, and the same

problem with a large jump inBx.
• Problems with randomly generated initial conditions were solved. The initial data

contained random jumps inBx also.

All of the above tests readily report negative pressures if the Faraday law source term is
dropped, unless theBx jumps are removed as well. We believe that these tests are extensive
enough to show beyond reasonable doubt that the method is positive under all circumstances.
We also discretized Powell’s source terms in the same way and found that the method is
not always positive. For example, the Riemann problem

leftstate= [ρ = 1, vy = 10, P = 0.1, Bx = −1]
(29)

rightstate= [ρ = 1, vy = 10, P = 0.1, Bx = 1]

(γ = 5/3, µ0= 1, the unlisted components are zero) breaks Powell’s method. In principle it
is of course possible that some other discretization would render Powell’s method positive.

5. HYBRIDIZATION WITH ROE’S METHOD

Assume thatF is a numerical flux function computed by any method, and we want to
find if it gives guaranteed positive updated left and right states. Assume that the wavespeed
bounds again satisfybL ≤ 0≤ bR (if not, then hybridization is unnecessary since the flux
is then given byfL or fR). We take a “virtual” cell of length−bLτ on the left side of the
interface and another virtual cell of lengthbRτ on the right side. The virtual cells are smaller
than the real cells because the Courant number is smaller than one. From the conservation
law (2) one easily obtains the following expressions for the updated virtual cell states,

uvirt
L = uL + F − fL

bL
+1um

(30)

uvirt
R = uR+ F − fR

bR
+1um.

To hybridize fluxF with the HLL flux FHLL (13) one only has to check whether the states
uvirt

L anduvirt
R are physical. If they are, one can safely use the fluxF . If either of them is not

physical, there is a danger of usingF , and one has to replace the interface flux byFHLL to
ensure positivity.
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We have carried out the hybridization for the Roe-type interface flux [1, 12, 15, 16, 18]
and run the same test problems as were used to show the positivity of the HLL method in
the previous section. The hybridized method was positive in all cases and it gave identical
results with the Roe method in cases where the Roe method was in no danger of producing
nonphysical states. In this test we used the linearization given by Powell [16].

In principle one could use the true cell widths rather than the virtual cells when checking
positivity. By doing this, the fluxF would be abandoned only when it would with certainty
produce a nonphysical state. We think that it may be good for roundoff error and for other
reasons do revert to the HLL method a little bit earlier, because when the virtual states
become nonphysical, the linearized Roe method has already been pushed to a parameter
range where its accuracy has been lost, so one could equally well use the HLL method
in these cases. Our experience shows that in typical physical problems, reverting to HLL
occurs only rarely and thus the vast majority of Riemann problems solved are solved by the
Roe method.

6. CONCLUSIONS AND FUTURE WORK

We have found a positive and conservative method for ideal MHD equations by first
generalizing the MHD equations to allow for magnetic monopoles. Since positive and
conservative methods are also numerically stable, this is an important advance in MHD
simulation.

The usual MHD equations are based on Maxwell’s equations which do not allow magnetic
monopoles. If one tries to use an initial condition which has∇ · B 6= 0 with the ordinary
MHD equations, the equations punish us by sometimes giving a negative pressure.

We derived monopole-MHD equations by starting from generalized Maxwell’s equa-
tions which are invariant under duality transforms that mix electric and magnetic fields
and charges. The duality transform implies a generalized expression for the Lorentz force
which contains the magnetostatic force acting on magnetic charges. The monopole-MHD
equations are the same as the usual MHD equations, except that there is the source term
−v∇ ·B on the right-hand side of Faraday’s law.

We showed numerically that the monopole-MHD equations are HLL-positive for any
physical initial data if one discretizes the source term in a specific way. By this we mean
that the HLL middle stateum+1um, where1um is the Faraday source term contribution,
is positive. We did not try to investigate the positivity of the exact solutions of monopole-
MHD Riemann problems, but we are inclined to conjecture that there is a positive pressure
solution (or vacuum) for these Riemann problems for any physical left and right states.

It is interesting to note that a seemingly esoteric subject such as magnetic monopoles
appears to play a key role in developing a robust, positive, and conservative numerical
method for MHD.

The derived positive and conservative method is fully robust, but rather diffusive. To
improve on this, we noted that it is possible to hybridize the developed HLL-monopole-
MHD method with any method that produces interface fluxes. One just has to check the
positivity of the left and right “virtual” states and replace the interface flux with the HLL
flux if either of them is nonphysical. This operation is fast to perform and can be used
to introduce positivity to any non-positive numerical flux function. As an example, we
carried out the hybridization for the first-order Roe method. The hybridization of second-
or higher-order Roe methods could be similarly studied.
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The hybridization method presented in this paper is not limited to MHD. It works for any
hyperbolic system of conservation laws and a source term, for which a positive (HLL-type)
Riemann solver is known. On the other hand, in the absence of a source term, the HLL
Riemann solver is positive, if the exact solution of any Riemann problem is positive and if
the set of physical states is convex. Thus besides MHD, the hybridization could be applied,
e.g., to any conservative system whose Riemann problems are well-posed and whose set of
physical states is convex.

We have not yet considered in detail what happens if the background magnetic field
is analytically separated in the manner first done by Tanaka [20, 21]. In principle, one
doesn’t have to separate the background field if our method is really positive under all
circumstances. However, it might still be wise to do so to avoid roundoff error problems.
Separating the background field might also be a more accurate way, even if there is no
difference in positivity.

In the near future we will implement our scheme in our three-dimensional global MHD
simulation. Going from one to three dimensions does not affect positivity since the 3D
solution is computed by breaking the problem down in one-dimensional Riemann problems.
We will then also see how small∇ ·B remains and whether elliptic cleaning is needed or not.
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