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The exact Riemann problem solutions of the usual equations of ideal magnetohy-
drodynamics (MHD) can have negative pressures, if the initial date hBs# 0. This
creates a problem for numerical solving because in a first-order finite-volume con-
servative Godunov-type method one cannot avoid jumps in the normal magnetic field
component even if the magnetic field was divergenceless in the three-dimensional
sense. We show that by allowing magnetic monopoles in MHD equations and properly
taking into account the magnetostatic contribution to the Lorentz force, an additional
source term appears in Faraday’s law only. Using the Harten—-Lax—vanLeer (HLL)
Riemann solver and discretizing the source term in a specific manner, we obtain
a method which is positive and conservative. We show positivity by extensive nu-
merical experimentation. This MHD-HLL method is positive and conservative but
rather diffusive; thus we show how to hybridize this method with the Roe method
to obtain a much higher accuracy while still retaining positivity. The result is a fully
robust positive conservative scheme for ideal MHD, whose accuracy and efficiency
properties are similar to the first order Roe method and which k&e small
in the same sense as Powell's method. As a special case, a method with similar
characteristics for accuracy and robustness is obtained for the Euler equations as
well. (© 2000 Academic Press

1. INTRODUCTION

The equations of ideal magnetohydrodynamics (MHD) are widely used in many lar
scale plasma physical simulations, and their importance is growing as high performe
computing is becoming a “desktop” tool. As an example, there are plans to start usi
three-dimensional MHD-based magnetosphere-ionosphere coupling simulation for of
tive space weather forecasting purposes. For such applications especially, the robustn
the code is very important since the program is expected at least to converge for any
wind input, if not necessarily to produce a correct forecast in every situation.

649

0021-9991/00 $35.00
Copyright(© 2000 by Academic Press
All rights of reproduction in any form reserved.



650 P. JANHUNEN

An optimal scheme for the MHD equations would have the following four properties:

e Exact conservation of mass, momentum, and energy.

e Preservation oV - B = 0 as accurately as possible.

o Positivity (pressure and density remain positive under all circumstances).
o As small numerical dissipation as possible.

Any finite-volume method (FVM) which is based on computing the fluxes at cell ir
terfaces is conservative so the first property is not difficult to satisfy [11].MhB~0
requirement is more difficult, but if a scheme does not presgn® = 0 within roundoff
error, it might preserve it within truncation error [15, 16], which is usually enough. In oth
cases one has to periodically remove the divergence by a subtraction of the curl-free
which is sometimes called a projective method or elliptic cleaning [12, 19-21]. Findi
a provably positive scheme which is at the same time conservative is, on the other h
still an unsolved problem in MHD, although certain kinetic solvers [2] may actually ha
these properties, but they are much more diffusive than Roe-type methods (low-diffus
kinetic-type solvers have been developed for Euler equations [13], but are not know
MHD). Lacking such a scheme, one has had to fight the positivity problem by adding expl
diffusion, fiddling with the initial and boundary conditions or grid refinement, modifyini
the wavespeeds, or by trying to fix negative pressures once they arise by adding er
locally. The list of tricks is long and not exhaustive. These usually help in individual cas
but none of these cures the problem for once and for all. The last point, accuracy, is ¢
est to achieve with Roe-type methods, which are based on some local linearization o
Riemann problem[11]. Itis well known that Roe-type methods are not positive, which me
that no linearization is able to produce a positive solution for all Riemann problems [4]

Our practical experience with magnetospheric MHD simulations [8—10] has shown t
the positivity problem is worse and occurs more often than what one could assume :
reading the literature, and that problems arise more often when one moves towards |
realistic models with real solar wind input, automatically adaptive spatial and tempc
grids, and realistic ionospheric models. According to our experience, the most worke
solution to cure negative pressures after they arise is simply to cancel the cell update si
its pressure would become negative. This method is sometimes able to fix negative pres
in a stable manner, although it is of course unphysical and breaks the conservation la

The connection between the pressBrehe total energy density, the mass density,
the momentum fluy = pv, and magnetic fiel® is

p2 BZ)
P=-plu->_2) 1
v-v(u-5 - o )

If a scheme is positive and conserves at least the total energy exactly, it is numeric
stable in the sense that all energy components (thermal, kinetic, and magnetic) rel
bounded, if the flow through the boundaries is well behaved. The total erfetyyU re-
mains bounded because of energy conservation. The kinetic and magnetic energy den:
and thus all components of the velocity and magnetic field, are also bounded bBcalse
Thus, a positive conservative scheme is fully robust and thus highly desirable.

By looking at (1) it is clear why it is not easy to develop conservative methods whi
are also positive. The pressure (thermal energy) is computed by subtracting the kinetic
magnetic energies from the total energy. Especially in a low-beta plagm&foP/B?),
the total energy consists almost totally of magnetic energy, and thus subtracting the tv



METHOD FOR MAGNETOHYDRODYNAMICS 651

prone to all kinds of numerical errors which can easily tBrnegative. The quantitids, p,

p, andB on the right-hand side of (1) are themselves computed from their own conserva
laws, which are seemingly unrelated to Eq. (1). Thus it is not @eiori that conservative
methods which are positive under all circumstances exist at all.

One can ease the positivity problemsin alow-beta plasma somewhat if the strong mag
field is a potential field. Then one can separate the background magnetic field analytic
[20, 21]. We use this method in our global MHD simulation [8—10], but for simplicity w
drop these considerations from this paper.

If one drops the conservation requirement and uses the primitive variable formulatio
the semi-conservative formulation [17] where the pressure is one of the dynamical varial
itis easierto develop positive methods. However, when doing so one loses exact conser
which causes other shortcomings, such as possibly erroneous shock speeds [11].

Itis intriguing that the Harten—Lax—vanLeer (HLL) scheme [3, 4, 6] is a positive schel
forany conservative hyperbolic system, whose exact Riemann problem solutions are pos
for positive left and right states. In addition to the Euler equations, a planar Lagrangian M
Riemann problem without a jump in the normal magnetic field has been shown to be \
posed [14]. The solution of a well-posed Riemann problem has non-negative pressure
density (zero pressure and density can occur, but this is usually not an issue for nume
Thus the HLL method is conservative and positive for Euler equations, as was asserte
Einfeldtet al.[4].

A straightforward application of the HLL scheme to the seven-wave MHD equatio
reveals that the HLL middle state, which is an average of the exact Riemann prob
solution, can become non-positive if there is a jump of the normal component of the magr
field across the cell interface. This implies that even the exact solutions to MHD Riem.
problems sometimes fail to be positive, if there is a jump in the cell interface norn
component of the magnetic fieBl, i.e., a nonzerd’ - B, in the initial data. If there is no
jump in By, the HLL method for MHD seems to be positive if the bounds to the wavespee
are large enough (we have found no counterexamples). This also follows from the w
posedness of MHD mentioned above.

In a two- or three-dimensional first-order Cartesian FVM which is based on solvi
one-dimensional Riemann problems, we cannot avoid jumps &t cell interfaces even if
V -B=0is valid in a multidimensional sense. Thus, to find a positive conservative sche
for MHD we seem to have two possible routes. The first route is to abandon the fi
order FVM, which is based on piecewise constant states, and go to higher order mett
Higher order representations of the magnetic field can be made divergence-free, a:
a surface-averaged representation. The second route is to modify the MHD equatior
that they give positive solutions even wh&n B £ 0. In this paper we pursue the seconc
route.

The structure of the paper is as follows. After reviewing the HLL method, we find
modified MHD system which allow¥ - B 0. We then apply the HLL method to this
modified MHD system and show its positivity by numerical experiments. After havir
found this positive and conservative method, we show that to increase its accuracy, it ce
hybridized by any other method of computing the interface fluxes while retaining positivi
As an example we hybridize it with Roe’s method. The resulting method is identical w
Roe’s method whenever Roe’s method is in no danger of violating positivity, but revert:
HLL in the remaining cases. This method, therefore, has the well-known accuracy prope
of Roe’s method, but has cured its positivity problem.
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2. THE HLL METHOD

The HLL scheme without a source term has been given elsewhere [3, 4]. We presen
derivation here, also including a source term.
Consider a one-dimensional hyperbolic system [11]

ou of

o . 2
at 3x+s )

whereu = u(x, t) is the solution vectorf = f (u) is the flux vector, and=s(x, t) is the
source term. The initial condition is of the Riemann problem type,

U, X <0
Ug, X > 0.

u(x, 0) = { 3

Let b and bg be the minimum and maximum wavespeed, respectively, sofkat) =
u, for x < bt andu(x, t) =ug for x > bgt. Let t be the timestep andd = (bg — b )t the
length of the interval on whichi(x, ) can differ fromu_ andug. We first assume that
b, <0 andbg > 0 and return to the other cases below. We denote the spatial average «
interval L by u(t),

_ 1
ut) = E/dxu(x,t). 4)
Integrating (2) from O ta and taking the spatial average o\leyields
) GO =~ (fe — )+ [ disit, )
0

wherefr= f(ug) and f = f(up).
The spatial average at the initial momeri0) is easy to compute by using (3) and the
assumptions®_ <0, bgr > 0, and we obtain

brUr — bLuL

u(0) = 6
u(0) — (6)
Thus we can writ&l(7) = Uy + Aumy, Where
brug —bLug — (fr— f)
= 7
Um — ()
and
AUp, = / dts(t). (8)
0

The stateu(r) is the average of the exact solution of the Riemann problem. If the «
of physical states of the hyperbolic system (states with positive density and pressur
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convex, any average of physical states is a physical state [4]. Both Euler and MHD e
tions are convex in this sense. Convexity means that dndu, are physical states, then

u=(1—X2)ui+ AU is also, for O< A < 1. To show the convexity of MHD, we can write

the density and pressure of the average stats

p=Q=2)p1+ Ap2

(AB)? ©)

20

P=(1— AP+ AP+ (y — DAl —2) }@(A V)2 +

from which it is easily seen that >0 andP >0 if p; >0, 0,>0,P; >0, P,>0 and
0< A <1. Here,Av and AB are the jumps between statesandu, in the velocity and
magnetic field.

For convex hyperbolic systems we get the important results that if the exact solution of
Riemann problem is physical, then the HLL middle state) is also physical. Likewise, if
the HLL middle stateu(t) turns out to be nonphysical, we can infer that the exact Riema
problem solution must also be nonphysical, or else the bounds of the wavebpemtts
br have been underestimated.

Next we need the expression for the HLL interface fiyx, [4]. The flux Fy. . does not
depend omu, but only onup, UL, andug. One way of computingry, . is to consider the
cell L which resides left of the interface. Sin€g. cannot depend on the data on cells
which are left from cell, we can assume that these have the same state &s tell that
there is no jump on the left-hand interface of dellBecause the numerical flux function
Frie must equal the analytic fluf (u) if there is no jump [11], the flux entering cdll
from the left must be equal tfy . After time t, the solution in celL is equal tou_ on the
left side of the cell and tay, on the right side of the cell. The length of the interval wher
the solution isuy, is —b t. Thus we can write for the cell average after time

_ AX_ +b.tu. — b zu T
uL(r) = (AX LA)XLL LM - TXL(FHLL - fu) (10)

from which we obtain
Fae = fL +bo(um —up). (11)

Considering the right-hand ceR in a similar way we obtain an alternative expression fo
Frie,

Fie = fr+ br(Um — UR). (12)

The equivalence of Egs. (11) and (12) can be shown easily by using (7). By substityting
from (7) we can also write

b b — brfl — b, f
Fuy = 2t rR(UR ltJ)L) +b rRL LT (13)
rR— b

The above formulas for the HLL flux hold fds, <0<bg. If b <bgr <0, we have
simply Fy. = fgr. Likewise, if 0< b, < bg we haveFy | = f,.
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The contribution of the source terup, to cellsL and R must be computed by taking
into account how far the waves which are limitedtiayt andbrz have propagated within
each cell. On celL the average, (t) must therefore be incremented by, (1),

_ AX
Al (1) = A;L

AU, (14)
L

whereAXxm = (min(0, br) — mMin(0, b.))z. On cell R the corresponding modification is

_ AX
AlR(r) = A;"R

AUp, (15)
R

whereAx,mr= (max0, bg) — max(0, b_))z. These formulas are valid for the casgs> 0
andbg < 0 also. For each cell, one has to use both Egs. (14) and (15).

3. MAGNETIC MONOPOLES IN MHD

Magnetic monopoles were introduced in MHD in the pioneering work of Powell [15, 1¢
Similar equations had appeared already much earlier, but in a different context [5]. Pow
interest was not so much in deriving a positive method but rather toRe&small without
using elliptic cleaning. He reports that his equations KéepB ~ 0 within truncation error
and no elliptic cleaning is necessary [16].

Here we shall consider magnetic monopoles in MHD by going back to fundamentals fi
A proper generalization of Maxwell's equations when magnetic monopoles are presel
given by

V- E = pe/eo
. B
—-VXxE=jn+—
V-B=pm
V xB je + 19E
X = -,
Mole 2 ot

where the subscrigtrefers to electric charges and currents am@fers to magnetic charges
and currents [7]. These equations remain invariant in a global duality transform which mi
electric and magnetic fields [7],

E — E' = Ecosx + cBsina

1 (17)
B—B = —EEsina + Bcosu
provided that the charges transform as
, 1 .
Oe = 0 = Qe COS + ——0Om SiNc
HoC
(18)

1 .
Om — Oy, = ———0e SiNa + Qm COSa.
£oC
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The charge densitiess,, pm and current densitigs, jm transform in the same way as,
Om- In these formulasy is an arbitrary parameter, which does not depend on position a
time. If we require that the Lorentz force, which has the expression

F=0.(E+VvxB) (19)

for a purely electric chargg, is invariant under a duality transformation, we see by makin
a duality transform witle = /2 that the Lorentz force acting on a purely magnetic charg
Om is

1 1
F:mqm<s_czvxe). (20)

Thus the generalization of the Lorentz force density is
. 1 .
f=,0eE+Je><B'|'M—,0mB—8OJm><E. (21)
0

Even without resorting to the duality invariance, it is intuitively obvious that a magne
field must exert a force on a magnetic charge, in a similar vein as an electric field exert
electrostatic force on an electric charge.

Thejm x E term is of the ordefv/c)? times smaller than the term proportionaBand
thus can be dropped in the nonrelativistic case, which the MHD equations represent an)
(the displacement current term proportionabt®/dt is dropped from Ampere’s law). In
MHD, modifications arise in Faraday's law, where the magnetic current jtgrmust be
added, and in the momentum equation, where the “magnetostatic” force degBity.o
appears. Thus, the MHD system in the primitive variable formulation in the presence
magnetic monopoles is written as

ap
— =-V. VvV
T (ov)
9 1 1
p<+v-V>v=(VxB)xB—VP+BV-B
ot Mo Mo
. (22)
—+Vv-V|(Pp7")=0
<at+ )( p~")
oB V% (vxB)— |
—_— = X X — .
ot Jm

To close the system of equations, the magnetic cujrentust be expressed in terms of
the other variables. The “minimal” choice is

jm= pmv=(V-B)v, (23)

where it has been assumed that all magnetic charges move with the same wedscihe

plasma flow and there is no difference between positive and negative magnetic cha
We will use this expression in what follows. Since the only purpose of including magne
monopoles is to obtain a positive system of equations, it does not really matter what |
of particles the magnetic charges consist of. Any physically consistent assumption will
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since from general physical grounds we expect that for any system of particles, incluc
electric and magnetic charges, the corresponding fluid equations ought to have a po:
pressure solution. For example, we could assume that the magnetic charges are bol
ions so that there are positive ions with positive magnetic charge and positive ions \
negative magnetic charge and negatice electrons with zero magnetic charge.

Substituting Eq. (23) in the MHD equations above and writing them in conservative fo
yields, after some vector algebra (remembering YhaB # 0),

ap

P iv.p=0
st VP
B2 1
2—?+V~[@+<P+2—>I——BB}=O
" o - L0 . Mo (24)
——i—V-KU—i—P-}-—)V——(V-B)B}:O
at 210 Ho

oB
EJrV-(vB—Bv)_—vV-B,

wherel is the unit dyad.

Equations (24) are identical to those derived by Powell [15, 16], except that in Powe
version, there are additional source terms proportional {8 also in the momentum and
energy equation. The difference between our equations and Powell’s is due to the fact
we include the “magnetostatic” force dendy - B/ in the Lorentz force expression. If
one leaves out this term from the momentum equation, one obtains Powell’s version.

Our equations conserve momentum and energy, whereas in Powell’s equations, mo
tum and energy are not conservedvif B £ 0. We think that the presence of magnetic
monopoles should not break the conservation of total energy and momentum, becaus
ergy and momentum should be conserved in any physical system. Another way to see t
that if the magnetostatic force is left out, there is no force at all acting on magnetic chat
and they move as “godlike” particles, which is unphysical. Thus we believe that our vers
is the “correct” one, although correctness cannot be subjected to experimental testir
this case because magnetic monopoles have not been found in nature.

In both Egs. (24) and Powell’s, the source terms in Faraday’s law are similar. Thus
can make the same conclusion as Powell [15, 16]4idB is convected as a passive scalar

%(V~B)+V~(VV~B):0. (25)

Since these equations conserve mass, momentum, and energy, we call them consen
The fact that the volume integrals 8, By, and B, are not conserved ¥ - B #0 is not
physically important, as was also mentioned by Linde [12].

The linearized eigenstructure of Eqgs. (24) is quite similar to Powell's equations [1
The eigenvalues are the same, and the “divergence wave” exists. The divergence
eigenvectors differ; the other seven eigenvectors are the same.

4. HLL METHOD FOR MONOPOLE-MHD

We must now find a proper discretization for the source tegm-vV - B in Faraday's
law. In a one-dimensional Riemann problevh, B = 3 By /0 X.
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The magnetic part of the HLL source term from Eg. (8) is (the other parts are zero)

ABm—/dts(t>~/dt/dx< an>
/dt—/dx( aBX)

bt

= = /g(—v )AB
_bR—bL T m X
0

VinA By
br — b’

(26)

We approximated in the range . t, brt] by vi,, wherevy, is the velocity computed
from the HLL middle stateu,, Eq. (7). The range of integration could be reduced from
[bLz, brt] to [bLt, brt], becausé By /dx =0 for x < b t andx > bgt for eacht satisfying
0 <t <. We also needed to assume ti&tis continuous for <t <t (fort =0, By is
of course discontinuous). Notice that Eq. (26) is valid regardless of Biowaries in the
interval b t, brt]. Thus,v~ vy, is theonly approximation involved in (26), and we think
that this approximation for the velocity is, in the absence of detailed knowledge of
solution, quite reasonable.

For the HLL method to be positive, we must find expressions for the lower and up
boundshb; andbg for the wavespeeds of the exact Riemann problem solution. We are |
aware of rigorous bounds for MHD, instead we do the following,

2 Y max(P., Pr)
min(oL, pR)
_ max(B. BY)

UA -_ -

o min(oL, pr) 27)

f}z — maX(BEX’ B%X)

AT omin(pL, pRr)

R 1 R
v%:z[a+vA+\/ 2 _92)2 1 432(1% — 03, .
after which the wavespeed bounds are computed from
b, = min(vx,, -0

L (vxL, UxR) — V¢ (28)

br = max(vx, vxr) + V5.

These wavespeed bounds guarantee positivity according to our numerical verification
below). They probably overestimate the true wavespeeds somewhat, which may incr
the diffusion of our HLL method [4]. However, in most cases the jump between the |
and right states is not large and in these cdgeandbg approach to the limits of the

state eigenvalues, and the non-sharpness of the bounds is numerically insignificant. B
we will show how to hybridize the method with the Roe method, which makes a mod
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increase of HLL diffusion quite tolerable because the HLL method is reverted to in ol
rare cases then.

We have performed extensive numerical searches and experimentation to find count
amplesto the positivity of this method. No counterexamples have been found, butthe me
has produced a positive solution in every numerical test that we have thus far carried
Among the tests we have performed are the following:

e Computinguy, + Aup, for Riemann problems with random positive left and right
states. The total number of random problems scanned in this way was over ten million

e The test problems of Einfelddt al. [4] were used. We also tried to increase the
magnitude of the velocity components in the shear and rarefaction wave examples and
the same examples with a large jumpBgp.

e The magnetic shock tube problem of Brio and Wu [1] was solved, and the sa
problem with a large jump iBy.

o Problems with randomly generated initial conditions were solved. The initial de
contained random jumps iBy also.

All of the above tests readily report negative pressures if the Faraday law source ter
dropped, unless thB, jumps are removed as well. We believe that these tests are exten:
enough to show beyond reasonable doubt that the method is positive under all circumsta
We also discretized Powell’s source terms in the same way and found that the meth
not always positive. For example, the Riemann problem

leftstate=[p = 1, vy = 10, P = 0.1, By = —1]

. (29)
rightstate= [p = 1, vy = 10, P = 0.1, By = 1]
(y =5/3, uo =1, the unlisted components are zero) breaks Powell's method. In principls
is of course possible that some other discretization would render Powell's method posi

5. HYBRIDIZATION WITH ROE’S METHOD

Assume thaf is a numerical flux function computed by any method, and we want |
find if it gives guaranteed positive updated left and right states. Assume that the waves
bounds again satisfly, <0 < bg (if not, then hybridization is unnecessary since the flu;
is then given byf, or fgr). We take a “virtual” cell of length-b,_z on the left side of the
interface and another virtual cell of lendiht on the right side. The virtual cells are smaller
than the real cells because the Courant number is smaller than one. From the consen
law (2) one easily obtains the following expressions for the updated virtual cell states,

| F_f
u™ =u + ) L+ Aun
) (30)

. F — fr
UR' = Ur +
R

+ AUp.

To hybridize fluxF with the HLL flux Fy. . (13) one only has to check whether the state
uy™ anduli™ are physical. If they are, one can safely use the Ru¥ either of them is not
physical, there is a danger of usifg and one has to replace the interface fluxtpy, to
ensure positivity.
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We have carried out the hybridization for the Roe-type interface flux [1, 12, 15, 186, :
and run the same test problems as were used to show the positivity of the HLL methc
the previous section. The hybridized method was positive in all cases and it gave iden
results with the Roe method in cases where the Roe method was in no danger of prodt
nonphysical states. In this test we used the linearization given by Powell [16].

In principle one could use the true cell widths rather than the virtual cells when check
positivity. By doing this, the flu¥ would be abandoned only when it would with certainty
produce a nonphysical state. We think that it may be good for roundoff error and for of
reasons do revert to the HLL method a little bit earlier, because when the virtual st:
become nonphysical, the linearized Roe method has already been pushed to a pars
range where its accuracy has been lost, so one could equally well use the HLL me
in these cases. Our experience shows that in typical physical problems, reverting to |
occurs only rarely and thus the vast majority of Riemann problems solved are solved by
Roe method.

6. CONCLUSIONS AND FUTURE WORK

We have found a positive and conservative method for ideal MHD equations by f
generalizing the MHD equations to allow for magnetic monopoles. Since positive &
conservative methods are also numerically stable, this is an important advance in M
simulation.

The usual MHD equations are based on Maxwell’s equations which do not allow magn
monopoles. If one tries to use an initial condition which KasB # 0 with the ordinary
MHD equations, the equations punish us by sometimes giving a negative pressure.

We derived monopole-MHD equations by starting from generalized Maxwell's eqt
tions which are invariant under duality transforms that mix electric and magnetic fie
and charges. The duality transform implies a generalized expression for the Lorentz f
which contains the magnetostatic force acting on magnetic charges. The monopole-N\
equations are the same as the usual MHD equations, except that there is the source
—VvV - B on the right-hand side of Faraday’s law.

We showed numerically that the monopole-MHD equations are HLL-positive for a
physical initial data if one discretizes the source term in a specific way. By this we mq
that the HLL middle state, + Aup,, whereAuy, is the Faraday source term contribution,
is positive. We did not try to investigate the positivity of the exact solutions of monopo
MHD Riemann problems, but we are inclined to conjecture that there is a positive pres:
solution (or vacuum) for these Riemann problems for any physical left and right states

It is interesting to note that a seemingly esoteric subject such as magnetic monor
appears to play a key role in developing a robust, positive, and conservative nume
method for MHD.

The derived positive and conservative method is fully robust, but rather diffusive.
improve on this, we noted that it is possible to hybridize the developed HLL-monopo
MHD method with any method that produces interface fluxes. One just has to check
positivity of the left and right “virtual” states and replace the interface flux with the HL
flux if either of them is nonphysical. This operation is fast to perform and can be u:
to introduce positivity to any non-positive numerical flux function. As an example, v
carried out the hybridization for the first-order Roe method. The hybridization of seco
or higher-order Roe methods could be similarly studied.
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The hybridization method presented in this paper is not limited to MHD. It works for al
hyperbolic system of conservation laws and a source term, for which a positive (HLL-ty]
Riemann solver is known. On the other hand, in the absence of a source term, the |
Riemann solver is positive, if the exact solution of any Riemann problem is positive an
the set of physical states is convex. Thus besides MHD, the hybridization could be app
e.g., to any conservative system whose Riemann problems are well-posed and whose
physical states is convex.

We have not yet considered in detail what happens if the background magnetic f
is analytically separated in the manner first done by Tanaka [20, 21]. In principle, ¢
doesn’t have to separate the background field if our method is really positive under
circumstances. However, it might still be wise to do so to avoid roundoff error problen
Separating the background field might also be a more accurate way, even if there i
difference in positivity.

In the near future we will implement our scheme in our three-dimensional global MF
simulation. Going from one to three dimensions does not affect positivity since the
solution is computed by breaking the problem down in one-dimensional Riemann proble
We will then also see how smafl- B remains and whether elliptic cleaning is needed or no
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